Author : Jayanthi Raghavan
Affiliation : University of Windsor
Country : Canada
Category : Computer Science & Information Technology
Volume, Issue, Month, Year : 11, 01, January, 2021
Abstract :
In this work, deep CNN based model have been suggested for face recognition. CNN is employed to extract unique facial features and softmax classifier is applied to classify facial images in a fully connected layer of CNN. The experiments conducted in Extended YALE B and FERET databases for smaller batch sizes and low value of learning rate, showed that the proposed model has improved the face recognition accuracy. Accuracy rates of up to 96.2% is achieved using the proposed model in Extended Yale B database. To improve the accuracy rate further, preprocessing techniques like SQI, HE, LTISN, GIC and DoG are applied to the CNN model. After the application of preprocessing techniques, the improved accuracy of 99.8% is achieved with deep CNN model for the YALE B Extended Database. In FERET Database with frontal face, before the application of preprocessing techniques, CNN model yields the maximum accuracy of 71.4%. After applying the above-mentioned preprocessing techniques, the accuracy is improved to 76.3%
Keyword : CNN, ANN, GPU
For More Details : https://aircconline.com/csit/ papers/vol11/csit110101.pdf
No comments:
Post a Comment