Tuesday, December 8, 2020

SCALABLE DYNAMIC LOCALITYSENSITIVE HASHING FOR STRUCTURED DATASET ON MAIN MEMORY AND GPGPU MEMORY

 Author :  Toan Nguyen Mau

Affiliation :  Inoguchi Laboratory, School of Information Science, JAIST

Country :  Japan

Category :  Information Technology Management

Volume, Issue, Month, Year :  8, 17, December, 2018

Abstract :

Locality-sensitive hashing(LSH) is a significant algorithm for big-data hashing. The original LSH uses a static hash-table as a reduce mapping for the data. Which make LSH challenging to apply on real-time information retrieval system. The database of a realtime system needs to be scalably updated over time. In this research, we concentrate on increasing the accuracy, searching speed and throughput of the nearest neighbor searching problem on big dynamic database. The dynamic Locality-sensitive hashing(DLSH) is proposed for facing the static problem of original LSH. DLSH is targeted for deploying on main memory or GPGPU's global memory, which can increase the throughput searching by parallel processing on multiple cores. We analyzed the efficiency of DLSH by building the big dataset of structured audio fingerprint and comparing the performance with original LSH. To achieve the dynamics, DLSH requires more memory space and takes slightly slower than the LSH. With DLSH's advantages, it can be improved and fully applied in practice in a real-life information retrieval system.

Keyword :  Locality-sensitive hashing, Structured dataset, GPGPU Memory, Similarity Searching, Parallel Processing

Journal/ Proceedings Name :  Computer Science & Information Technology

For More Detailshttps://airccj.org/CSCP/vol8/csit89715.pdf

No comments:

Post a Comment