Sunday, April 4, 2021

RGBD BASED GENERATIVE ADVERSARIAL NETWORK FOR 3D SEMANTIC SCENE COMPLETION

 Author :  Jiahao Wang, Ling Pei

Affiliation :  Shanghai Jiao Tong University

Country :  China

Category :  Computer Science & Information Technology

Volume, Issue, Month, Year :  10, 01, January, 2020

Abstract :

3D scene understanding is of importance since it is a reflection about the real-world scenario. The goal of our work is to complete the 3d semantic scene from an RGB-D image. The state-ofthe-art methods have poor accuracy in the face of complex scenes. In addition, other existing 3D reconstruction methods use depth as the sole input, which causes performance bottlenecks. We introduce a two-stream approach that uses RGB and depth as input channels to a novel GAN architecture to solve this problem. Our method demonstrates excellent performance on both synthetic SUNCG and real NYU dataset. Compared with the latest method SSCNet, we achieve 4.3% gains in Scene Completion (SC) and 2.5% gains in Semantic Scene Completion (SSC) on NYU dataset.

Keyword :  Scene Completion, Semantic Segmentation, Generation Adversarial Network, RGB-D

For More Detailshttps://aircconline.com/csit/papers/vol10/csit100111.pdf

No comments:

Post a Comment